Paper Reading AI Learner

Teleoperated Robotic Arm Movement Using EMG Signal With Wearable MYO Armband

2018-10-03 23:41:01
Hussein F. Hassan, Sadiq J. Abou-Loukh, Ibraheem Kasim Ibraheem

Abstract

The main purpose of this research is to move the robotic arm (5DoF) in real-time, based on the surface Electromyography (sEMG) signals, as obtained from the wireless Myo gesture armband to distinguish seven hand movements. The sEMG signals are biomedical signals that estimate and record the electrical signals produced in muscles through their contraction and relaxation, representing neuromuscular activities. Therefore, controlling the robotic arm via the muscles of the human arm using sEMG signals is considered to be one of the most significant methods. The wireless Myo gesture armband is used to record sEMG signals from the forearm. In order to analyze these signals, the pattern recognition system is employed, which consists of three main parts: segmentation, feature extraction, and classification. Overlap technique is chosen for segmenting part of the signal. Six time domain features (MAV, WL, RMS, AR, ZC, and SSC) are extracted from each segment. The classifiers (SVM, LDA, and KNN) are employed to enable comparison between them in order to obtain optimum accuracy of the system. The results show that the SVM achieves higher system accuracy at 96.57 %, compared to LDA reaching 96.01 %, and 92.67 % accuracy achieved by KNN.

Abstract (translated)

URL

https://arxiv.org/abs/1810.09929

PDF

https://arxiv.org/pdf/1810.09929


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot