Paper Reading AI Learner

Differentiable Fine-grained Quantization for Deep Neural Network Compression

2018-10-20 21:48:03
Hsin-Pai Cheng, Yuanjun Huang, Xuyang Guo, Yifei Huang, Feng Yan, Hai Li, Yiran Chen

Abstract

Neural networks have shown great performance in cognitive tasks. When deploying network models on mobile devices with limited resources, weight quantization has been widely adopted. Binary quantization obtains the highest compression but usually results in big accuracy drop. In practice, 8-bit or 16-bit quantization is often used aiming at maintaining the same accuracy as the original 32-bit precision. We observe different layers have different accuracy sensitivity of quantization. Thus judiciously selecting different precision for different layers/structures can potentially produce more efficient models compared to traditional quantization methods by striking a better balance between accuracy and compression rate. In this work, we propose a fine-grained quantization approach for deep neural network compression by relaxing the search space of quantization bitwidth from discrete to a continuous domain. The proposed approach applies gradient descend based optimization to generate a mixed-precision quantization scheme that outperforms the accuracy of traditional quantization methods under the same compression rate.

Abstract (translated)

URL

https://arxiv.org/abs/1810.10351

PDF

https://arxiv.org/pdf/1810.10351.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot