Paper Reading AI Learner

Boundary Attributions Provide Normal Attributions

2021-03-20 22:36:39
Zifan Wang, Matt Fredrikson, Anupam Datta

Abstract

Recent work on explaining Deep Neural Networks (DNNs) focuses on attributing the model's output scores to input features. However, when it comes to classification problems, a more fundamental question is how much does each feature contributes to the model's decision to classify an input instance into a specific class. Our first contribution is Boundary Attribution, a new explanation method to address this question. BA leverages an understanding of the geometry of activation regions. Specifically, they involve computing (and aggregating) normal vectors of the local decision boundaries for the target input. Our second contribution is a set of analytical results connecting the adversarial robustness of the network and the quality of gradient-based explanations. Specifically, we prove two theorems for ReLU networks: BA of randomized smoothed networks or robustly trained networks is much closer to non-boundary attribution methods than that in standard networks. These analytics encourage users to improve model robustness for high-quality explanations. Finally, we evaluate the proposed methods on ImageNet and show BAs produce more concentrated and sharper visualizations compared with non-boundary ones. We further demonstrate that our method also helps to reduce the sensitivity of attributions to the baseline input if one is required.

Abstract (translated)

URL

https://arxiv.org/abs/2103.11257

PDF

https://arxiv.org/pdf/2103.11257.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot