Paper Reading AI Learner

High Precision Control of Tracked Field Robots in the Presence of Unknown Traction Coefficients

2021-03-21 03:24:27
Erkan Kayacan, Sierra N. Young, Joshua M. Peschel, Girish Chowdhary

Abstract

Accurate steering through crop rows that avoids crop damage is one of the most important tasks for agricultural robots utilized in various field operations, such as monitoring, mechanical weeding, or spraying. In practice, varying soil conditions can result in off-track navigation due to unknown traction coefficients so that it can cause crop damage. To address this problem, this paper presents the development, application, and experimental results of a real-time receding horizon estimation and control (RHEC) framework applied to a fully autonomous mobile robotic platform to increase its steering accuracy. Recent advances in cheap and fast microprocessors, as well as advances in solution methods for nonlinear optimization problems, have made nonlinear receding horizon control (RHC) and receding horizon estimation (RHE) methods suitable for field robots that require high frequency (milliseconds) updates. A real-time RHEC framework is developed and applied to a fully autonomous mobile robotic platform designed by the authors for in-field phenotyping applications in Sorghum fields. Nonlinear RHE is used to estimate constrained states and parameters, and nonlinear RHC is designed based on an adaptive system model which contains time-varying parameters. The capabilities of the real-time RHEC framework are verified experimentally, and the results show an accurate tracking performance on a bumpy and wet soil field. The mean values of the Euclidean error and required computation time of the RHEC framework are respectively equal to $0.0423$ m and $0.88$ milliseconds.

Abstract (translated)

URL

https://arxiv.org/abs/2103.11294

PDF

https://arxiv.org/pdf/2103.11294.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot