Paper Reading AI Learner

Am I fit for this physical activity? Neural embedding of physical conditioning from inertial sensors

2021-03-22 18:00:27
Davi Pedrosa de Aguiar, Otávio Augusto Silva, Fabricio Murai

Abstract

Inertial Measurement Unit (IMU) sensors are becoming increasingly ubiquitous in everyday devices such as smartphones, fitness watches, etc. As a result, the array of health-related applications that tap onto this data has been growing, as well as the importance of designing accurate prediction models for tasks such as human activity recognition (HAR). However, one important task that has received little attention is the prediction of an individual's heart rate when undergoing a physical activity using IMU data. This could be used, for example, to determine which activities are safe for a person without having him/her actually perform them. We propose a neural architecture for this task composed of convolutional and LSTM layers, similarly to the state-of-the-art techniques for the closely related task of HAR. However, our model includes a convolutional network that extracts, based on sensor data from a previously executed activity, a physical conditioning embedding (PCE) of the individual to be used as the LSTM's initial hidden state. We evaluate the proposed model, dubbed PCE-LSTM, when predicting the heart rate of 23 subjects performing a variety of physical activities from IMU-sensor data available in public datasets (PAMAP2, PPG-DaLiA). For comparison, we use as baselines the only model specifically proposed for this task, and an adapted state-of-the-art model for HAR. PCE-LSTM yields over 10% lower mean absolute error. We demonstrate empirically that this error reduction is in part due to the use of the PCE. Last, we use the two datasets (PPG-DaLiA, WESAD) to show that PCE-LSTM can also be successfully applied when photoplethysmography (PPG) sensors are available to rectify heart rate measurement errors caused by movement, outperforming the state-of-the-art deep learning baselines by more than 30%.

Abstract (translated)

URL

https://arxiv.org/abs/2103.12095

PDF

https://arxiv.org/pdf/2103.12095.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot