Paper Reading AI Learner

Contrastive Reasoning in Neural Networks

2021-03-23 05:54:36
Mohit Prabhushankar, Ghassan AlRegib

Abstract

Neural networks represent data as projections on trained weights in a high dimensional manifold. The trained weights act as a knowledge base consisting of causal class dependencies. Inference built on features that identify these dependencies is termed as feed-forward inference. Such inference mechanisms are justified based on classical cause-to-effect inductive reasoning models. Inductive reasoning based feed-forward inference is widely used due to its mathematical simplicity and operational ease. Nevertheless, feed-forward models do not generalize well to untrained situations. To alleviate this generalization challenge, we propose using an effect-to-cause inference model that reasons abductively. Here, the features represent the change from existing weight dependencies given a certain effect. We term this change as contrast and the ensuing reasoning mechanism as contrastive reasoning. In this paper, we formalize the structure of contrastive reasoning and propose a methodology to extract a neural network's notion of contrast. We demonstrate the value of contrastive reasoning in two stages of a neural network's reasoning pipeline : in inferring and visually explaining decisions for the application of object recognition. We illustrate the value of contrastively recognizing images under distortions by reporting an improvement of 3.47%, 2.56%, and 5.48% in average accuracy under the proposed contrastive framework on CIFAR-10C, noisy STL-10, and VisDA datasets respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2103.12329

PDF

https://arxiv.org/pdf/2103.12329.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot