Paper Reading AI Learner

DualConv: Dual Mesh Convolutional Networks for Shape Correspondence

2021-03-23 11:22:47
Nitika Verma, Adnane Boukhayma, Jakob Verbeek, Edmond Boyer
         

Abstract

Convolutional neural networks have been extremely successful for 2D images and are readily extended to handle 3D voxel data. Meshes are a more common 3D shape representation that quantize the shape surface instead of the ambient space as with voxels, hence giving access to surface properties such as normals or appearances. The formulation of deep neural networks on meshes is, however, more complex since they are irregular data structures where the number of neighbors varies across vertices. While graph convolutional networks have previously been proposed over mesh vertex data, in this paper we explore how these networks can be extended to the dual face-based representation of triangular meshes, where nodes represent triangular faces in place of vertices. In comparison to the primal vertex mesh, its face dual offers several advantages, including, importantly, that the dual mesh is regular in the sense that each triangular face has exactly three neighbors. Moreover, the dual mesh suggests the use of a number of input features that are naturally defined over faces, such as surface normals and face areas. We evaluate the dual approach on the shape correspondence task on the FAUST human shape dataset and other versions of it with varying mesh topology. While applying generic graph convolutions to the dual mesh shows already improvements over primal mesh inputs, our experiments demonstrate that building additionally convolutional models that explicitly leverage the neighborhood size regularity of dual meshes enables learning shape representations that perform on par or better than previous approaches in terms of correspondence accuracy and mean geodesic error, while being more robust to topological changes in the meshes between training and testing shapes.

Abstract (translated)

URL

https://arxiv.org/abs/2103.12459

PDF

https://arxiv.org/pdf/2103.12459.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot