Paper Reading AI Learner

Hierarchical Deep CNN Feature Set-Based Representation Learning for Robust Cross-Resolution Face Recognition

2021-03-25 14:03:42
Guangwei Gao, Yi Yu, Jian Yang, Guo-Jun Qi, Meng Yang

Abstract

Cross-resolution face recognition (CRFR), which is important in intelligent surveillance and biometric forensics, refers to the problem of matching a low-resolution (LR) probe face image against high-resolution (HR) gallery face images. Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space where the resolution discrepancy is mitigated. However, little works consider how to extract and utilize the intermediate discriminative features from the noisy LR query faces to further mitigate the resolution discrepancy due to the resolution limitations. In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR. In particular, our contributions are threefold. (i) To learn more robust and discriminative features, we desire to adaptively fuse the contextual features from different layers. (ii) To fully exploit these contextual features, we design a feature set-based representation learning (FSRL) scheme to collaboratively represent the hierarchical features for more accurate recognition. Moreover, FSRL utilizes the primitive form of feature maps to keep the latent structural information, especially in noisy cases. (iii) To further promote the recognition performance, we desire to fuse the hierarchical recognition outputs from different stages. Meanwhile, the discriminability from different scales can also be fully integrated. By exploiting these advantages, the efficiency of the proposed method can be delivered. Experimental results on several face datasets have verified the superiority of the presented algorithm to the other competitive CRFR approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2103.13851

PDF

https://arxiv.org/pdf/2103.13851.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot