Paper Reading AI Learner

Training Neural Networks Using the Property of Negative Feedback to Inverse a Function

2021-03-25 20:13:53
Md Munir Hasan, Jeremy Holleman

Abstract

With high forward gain, a negative feedback system has the ability to perform the inverse of a linear or non linear function that is in the feedback path. This property of negative feedback systems has been widely used in analog circuits to construct precise closed-loop functions. This paper describes how the property of a negative feedback system to perform inverse of a function can be used for training neural networks. This method does not require that the cost or activation functions be differentiable. Hence, it is able to learn a class of non-differentiable functions as well where a gradient descent-based method fails. We also show that gradient descent emerges as a special case of the proposed method. We have applied this method to the MNIST dataset and obtained results that shows the method is viable for neural network training. This method, to the best of our knowledge, is novel in machine learning.

Abstract (translated)

URL

https://arxiv.org/abs/2103.14115

PDF

https://arxiv.org/pdf/2103.14115.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot