Paper Reading AI Learner

Classification of Seeds using Domain Randomization on Self-Supervised Learning Frameworks

2021-03-29 12:50:06
Venkat Margapuri, Mitchell Neilsen

Abstract

The first step toward Seed Phenotyping i.e. the comprehensive assessment of complex seed traits such as growth, development, tolerance, resistance, ecology, yield, and the measurement of pa-rameters that form more complex traits is the identification of seed type. Generally, a plant re-searcher inspects the visual attributes of a seed such as size, shape, area, color and texture to identify the seed type, a process that is tedious and labor-intensive. Advances in the areas of computer vision and deep learning have led to the development of convolutional neural networks (CNN) that aid in classification using images. While they classify efficiently, a key bottleneck is the need for an extensive amount of labelled data to train the CNN before it can be put to the task of classification. The work leverages the concepts of Contrastive Learning and Domain Randomi-zation in order to achieve the same. Briefly, domain randomization is the technique of applying models trained on images containing simulated objects to real-world objects. The use of synthetic images generated from a representational sample crop of real-world images alleviates the need for a large volume of test subjects. As part of the work, synthetic image datasets of five different types of seed images namely, canola, rough rice, sorghum, soy and wheat are applied to three different self-supervised learning frameworks namely, SimCLR, Momentum Contrast (MoCo) and Build Your Own Latent (BYOL) where ResNet-50 is used as the backbone in each of the networks. When the self-supervised models are fine-tuned with only 5% of the labels from the synthetic dataset, results show that MoCo, the model that yields the best performance of the self-supervised learning frameworks in question, achieves an accuracy of 77% on the test dataset which is only ~13% less than the accuracy of 90% achieved by ResNet-50 trained on 100% of the labels.

Abstract (translated)

URL

https://arxiv.org/abs/2103.15578

PDF

https://arxiv.org/pdf/2103.15578.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot