Paper Reading AI Learner

Adaptive Boosting for Domain Adaptation: Towards Robust Predictions in Scene Segmentation

2021-03-29 15:12:58
Zhedong Zheng, Yi Yang

Abstract

Domain adaptation is to transfer the shared knowledge learned from the source domain to a new environment, i.e., target domain. One common practice is to train the model on both labeled source-domain data and unlabeled target-domain data. Yet the learned models are usually biased due to the strong supervision of the source domain. Most researchers adopt the early-stopping strategy to prevent over-fitting, but when to stop training remains a challenging problem since the lack of the target-domain validation set. In this paper, we propose one efficient bootstrapping method, called Adaboost Student, explicitly learning complementary models during training and liberating users from empirical early stopping. Adaboost Student combines the deep model learning with the conventional training strategy, i.e., adaptive boosting, and enables interactions between learned models and the data sampler. We adopt one adaptive data sampler to progressively facilitate learning on hard samples and aggregate ``weak'' models to prevent over-fitting. Extensive experiments show that (1) Without the need to worry about the stopping time, AdaBoost Student provides one robust solution by efficient complementary model learning during training. (2) AdaBoost Student is orthogonal to most domain adaptation methods, which can be combined with existing approaches to further improve the state-of-the-art performance. We have achieved competitive results on three widely-used scene segmentation domain adaptation benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/2103.15685

PDF

https://arxiv.org/pdf/2103.15685.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot