Paper Reading AI Learner

A Model-Based Approach to Synthetic Data Set Generation for Patient-Ventilator Waveforms for Machine Learning and Educational Use

2021-03-29 15:10:17
A. van Diepen, T. H. G. F. Bakkes, A. J. R. De Bie, S. Turco, R. A. Bouwman, P. H. Woerlee, M. Mischi

Abstract

Although mechanical ventilation is a lifesaving intervention in the ICU, it has harmful side-effects, such as barotrauma and volutrauma. These harms can occur due to asynchronies. Asynchronies are defined as a mismatch between the ventilator timing and patient respiratory effort. Automatic detection of these asynchronies, and subsequent feedback, would improve lung ventilation and reduce the probability of lung damage. Neural networks to detect asynchronies provide a promising new approach but require large annotated data sets, which are difficult to obtain and require complex monitoring of inspiratory effort. In this work, we propose a model-based approach to generate a synthetic data set for machine learning and educational use by extending an existing lung model with a first-order ventilator model. The physiological nature of the derived lung model allows adaptation to various disease archetypes, resulting in a diverse data set. We generated a synthetic data set using 9 different patient archetypes, which are derived from measurements in the literature. The model and synthetic data quality have been verified by comparison with clinical data, review by a clinical expert, and an artificial intelligence model that was trained on experimental data. The evaluation showed it was possible to generate patient-ventilator waveforms including asynchronies that have the most important features of experimental patient-ventilator waveforms.

Abstract (translated)

URL

https://arxiv.org/abs/2103.15684

PDF

https://arxiv.org/pdf/2103.15684.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot