Paper Reading AI Learner

Text Classification Using Hybrid Machine Learning Algorithms on Big Data

2021-03-30 19:02:48
D.C. Asogwa, S.O. Anigbogu, I.E. Onyenwe, F.A. Sani

Abstract

Recently, there are unprecedented data growth originating from different online platforms which contribute to big data in terms of volume, velocity, variety and veracity (4Vs). Given this nature of big data which is unstructured, performing analytics to extract meaningful information is currently a great challenge to big data analytics. Collecting and analyzing unstructured textual data allows decision makers to study the escalation of comments/posts on our social media platforms. Hence, there is need for automatic big data analysis to overcome the noise and the non-reliability of these unstructured dataset from the digital media platforms. However, current machine learning algorithms used are performance driven focusing on the classification/prediction accuracy based on known properties learned from the training samples. With the learning task in a large dataset, most machine learning models are known to require high computational cost which eventually leads to computational complexity. In this work, two supervised machine learning algorithms are combined with text mining techniques to produce a hybrid model which consists of Naïve Bayes and support vector machines (SVM). This is to increase the efficiency and accuracy of the results obtained and also to reduce the computational cost and complexity. The system also provides an open platform where a group of persons with a common interest can share their comments/messages and these comments classified automatically as legal or illegal. This improves the quality of conversation among users. The hybrid model was developed using WEKA tools and Java programming language. The result shows that the hybrid model gave 96.76% accuracy as against the 61.45% and 69.21% of the Naïve Bayes and SVM models respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2103.16624

PDF

https://arxiv.org/pdf/2103.16624.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot