Paper Reading AI Learner

Analysis and modeling to forecast in time series: a systematic review

2021-03-31 23:48:46
Fatoumata Dama, Christine Sinoquet

Abstract

This paper surveys state-of-the-art methods and models dedicated to time series analysis and modeling, with the final aim of prediction. This review aims to offer a structured and comprehensive view of the full process flow, and encompasses time series decomposition, stationary tests, modeling and forecasting. Besides, to meet didactic purposes, a unified presentation has been adopted throughout this survey, to present decomposition frameworks on the one hand and linear and nonlinear time series models on the other hand. First, we decrypt the relationships between stationarity and linearity, and further examine the main classes of methods used to test for weak stationarity. Next, the main frameworks for time series decomposition are presented in a unified way: depending on the time series, a more or less complex decomposition scheme seeks to obtain nonstationary effects (the deterministic components) and a remaining stochastic component. An appropriate modeling of the latter is a critical step to guarantee prediction accuracy. We then present three popular linear models, together with two more flexible variants of the latter. A step further in model complexity, and still in a unified way, we present five major nonlinear models used for time series. Amongst nonlinear models, artificial neural networks hold a place apart as deep learning has recently gained considerable attention. A whole section is therefore dedicated to time series forecasting relying on deep learning approaches. A final section provides a list of R and Python implementations for the methods, models and tests presented throughout this review. In this document, our intention is to bring sufficient in-depth knowledge, while covering a broad range of models and forecasting methods: this compilation spans from well-established conventional approaches to more recent adaptations of deep learning to time series forecasting.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00164

PDF

https://arxiv.org/pdf/2104.00164.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot