Paper Reading AI Learner

Divergence Optimization for Noisy Universal Domain Adaptation

2021-04-01 04:16:04
Qing Yu, Atsushi Hashimoto, Yoshitaka Ushiku

Abstract

Universal domain adaptation (UniDA) has been proposed to transfer knowledge learned from a label-rich source domain to a label-scarce target domain without any constraints on the label sets. In practice, however, it is difficult to obtain a large amount of perfectly clean labeled data in a source domain with limited resources. Existing UniDA methods rely on source samples with correct annotations, which greatly limits their application in the real world. Hence, we consider a new realistic setting called Noisy UniDA, in which classifiers are trained with noisy labeled data from the source domain and unlabeled data with an unknown class distribution from the target domain. This paper introduces a two-head convolutional neural network framework to solve all problems simultaneously. Our network consists of one common feature generator and two classifiers with different decision boundaries. By optimizing the divergence between the two classifiers' outputs, we can detect noisy source samples, find "unknown" classes in the target domain, and align the distribution of the source and target domains. In an extensive evaluation of different domain adaptation settings, the proposed method outperformed existing methods by a large margin in most settings.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00246

PDF

https://arxiv.org/pdf/2104.00246.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot