Paper Reading AI Learner

Learning Deep Latent Subspaces for Image Denoising

2021-04-01 04:40:22
Yunhao Yang, Yuhan Zheng, Yi Wang, Chandrajit Bajaj

Abstract

Heterogeneity exists in most camera images. This heterogeneity manifests itself across the image space as varied Moire ringing, motion-blur, color-bleaching or lens based projection distortions. Moreover, combinations of these image artifacts can be present in small or large pixel neighborhoods, within an acquired image. Current camera image processing pipelines, including deep trained versions, tend to rectify the issue applying a single filter that is homogeneously applied to the entire image. This is also particularly true when an encoder-decoder type deep architecture is trained for the task. In this paper, we present a structured deep learning model that solves the heterogeneous image artifact filtering problem. We call our deep trained model the Patch Subspace Variational Autoencoder (PS-VAE) for Camera ISP. PS-VAE does not necessarily assume uniform image distortion levels nor similar artifact types within the image. Rather, our model attempts to learn to cluster different patches extracted from images into artifact type and distortion levels, within multiple latent subspaces (e.g. Moire ringing artifacts are often a higher dimensional latent distortion than a Gaussian motion blur artifact). Each image's patches are encoded into soft-clusters in their appropriate latent sub-space, using a prior mixture model. The decoders of the PS-VAE are also trained in an unsupervised manner for each of the image patches in each soft-cluster. Our experimental results demonstrates the flexibility and performance that one can achieve through improved heterogeneous filtering. We compare our results to a conventional one-encoder-one-decoder architecture.

Abstract (translated)

URL

https://arxiv.org/abs/2104.00253

PDF

https://arxiv.org/pdf/2104.00253.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot