Paper Reading AI Learner

Training Deep Normalizing Flow Models in Highly Incomplete Data Scenarios with Prior Regularization

2021-04-03 20:57:57
Edgar A. Bernal

Abstract

Deep generative frameworks including GANs and normalizing flow models have proven successful at filling in missing values in partially observed data samples by effectively learning -- either explicitly or implicitly -- complex, high-dimensional statistical distributions. In tasks where the data available for learning is only partially observed, however, their performance decays monotonically as a function of the data missingness rate. In high missing data rate regimes (e.g., 60% and above), it has been observed that state-of-the-art models tend to break down and produce unrealistic and/or semantically inaccurate data. We propose a novel framework to facilitate the learning of data distributions in high paucity scenarios that is inspired by traditional formulations of solutions to ill-posed problems. The proposed framework naturally stems from posing the process of learning from incomplete data as a joint optimization task of the parameters of the model being learned and the missing data values. The method involves enforcing a prior regularization term that seamlessly integrates with objectives used to train explicit and tractable deep generative frameworks such as deep normalizing flow models. We demonstrate via extensive experimental validation that the proposed framework outperforms competing techniques, particularly as the rate of data paucity approaches unity.

Abstract (translated)

URL

https://arxiv.org/abs/2104.01482

PDF

https://arxiv.org/pdf/2104.01482.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot