Paper Reading AI Learner

Learning from Self-Discrepancy via Multiple Co-teaching for Cross-Domain Person Re-Identification

2021-04-06 03:12:11
Suncheng Xiang, Yuzhuo Fu, Mengyuan Guan, Ting Liu


tract: Employing clustering strategy to assign unlabeled target images with pseudo labels has become a trend for person re-identification (re-ID) algorithms in domain adaptation. A potential limitation of these clustering-based methods is that they always tend to introduce noisy labels, which will undoubtedly hamper the performance of our re-ID system. To handle this limitation, an intuitive solution is to utilize collaborative training to purify the pseudo label quality. However, there exists a challenge that the complementarity of two networks, which inevitably share a high similarity, becomes weakened gradually as training process goes on; worse still, these approaches typically ignore to consider the self-discrepancy of intra-class relations. To address this issue, in this letter, we propose a multiple co-teaching framework for domain adaptive person re-ID, opening up a promising direction about self-discrepancy problem under unsupervised condition. On top of that, a mean-teaching mechanism is leveraged to enlarge the difference and discover more complementary features. Comprehensive experiments conducted on several large-scale datasets show that our method achieves competitive performance compared with the state-of-the-arts.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot