Paper Reading AI Learner

Few-Shot Transformation of Common Actions into Time and Space

2021-04-06 11:55:08
Pengwan Yang, Pascal Mettes, Cees G. M. Snoek

Abstract

This paper introduces the task of few-shot common action localization in time and space. Given a few trimmed support videos containing the same but unknown action, we strive for spatio-temporal localization of that action in a long untrimmed query video. We do not require any class labels, interval bounds, or bounding boxes. To address this challenging task, we introduce a novel few-shot transformer architecture with a dedicated encoder-decoder structure optimized for joint commonality learning and localization prediction, without the need for proposals. Experiments on our reorganizations of the AVA and UCF101-24 datasets show the effectiveness of our approach for few-shot common action localization, even when the support videos are noisy. Although we are not specifically designed for common localization in time only, we also compare favorably against the few-shot and one-shot state-of-the-art in this setting. Lastly, we demonstrate that the few-shot transformer is easily extended to common action localization per pixel.

Abstract (translated)

URL

https://arxiv.org/abs/2104.02439

PDF

https://arxiv.org/pdf/2104.02439


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot