Paper Reading AI Learner

Optical Flow Dataset Synthesis from Unpaired Images

2021-04-02 22:19:47
Adrian Wälchli, Paolo Favaro

Abstract

The estimation of optical flow is an ambiguous task due to the lack of correspondence at occlusions, shadows, reflections, lack of texture and changes in illumination over time. Thus, unsupervised methods face major challenges as they need to tune complex cost functions with several terms designed to handle each of these sources of ambiguity. In contrast, supervised methods avoid these challenges altogether by relying on explicit ground truth optical flow obtained directly from synthetic or real data. In the case of synthetic data, the ground truth provides an exact and explicit description of what optical flow to assign to a given scene. However, the domain gap between synthetic data and real data often limits the ability of a trained network to generalize. In the case of real data, the ground truth is obtained through multiple sensors and additional data processing, which might introduce persistent errors and contaminate it. As a solution to these issues, we introduce a novel method to build a training set of pseudo-real images that can be used to train optical flow in a supervised manner. Our dataset uses two unpaired frames from real data and creates pairs of frames by simulating random warps, occlusions with super-pixels, shadows and illumination changes, and associates them to their corresponding exact optical flow. We thus obtain the benefit of directly training on real data while having access to an exact ground truth. Training with our datasets on the Sintel and KITTI benchmarks is straightforward and yields models on par or with state of the art performance compared to much more sophisticated training approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2104.02615

PDF

https://arxiv.org/pdf/2104.02615.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot