Paper Reading AI Learner

On the Pitfalls of Learning with Limited Data: A Facial Expression Recognition Case Study

2021-04-02 18:53:41
Miguel Rodríguez Santander, Juan Hernández Albarracín, Adín Ramírez Rivera

Abstract

Deep learning models need large amounts of data for training. In video recognition and classification, significant advances were achieved with the introduction of new large databases. However, the creation of large-databases for training is infeasible in several scenarios. Thus, existing or small collected databases are typically joined and amplified to train these models. Nevertheless, training neural networks on limited data is not straightforward and comes with a set of problems. In this paper, we explore the effects of stacking databases, model initialization, and data amplification techniques when training with limited data on deep learning models' performance. We focused on the problem of Facial Expression Recognition from videos. We performed an extensive study with four databases at a different complexity and nine deep-learning architectures for video classification. We found that (i) complex training sets translate better to more stable test sets when trained with transfer learning and synthetically generated data, but their performance yields a high variance; (ii) training with more detailed data translates to more stable performance on novel scenarios (albeit with lower performance); (iii) merging heterogeneous data is not a straightforward improvement, as the type of augmentation and initialization is crucial; (iv) classical data augmentation cannot fill the holes created by joining largely separated datasets; and (v) inductive biases help to bridge the gap when paired with synthetic data, but this data is not enough when working with standard initialization techniques.

Abstract (translated)

URL

https://arxiv.org/abs/2104.02653

PDF

https://arxiv.org/pdf/2104.02653.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot