Paper Reading AI Learner

Adversarial Robustness under Long-Tailed Distribution

2021-04-06 17:53:08
Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, Dahua Lin

Abstract

Adversarial robustness has attracted extensive studies recently by revealing the vulnerability and intrinsic characteristics of deep networks. However, existing works on adversarial robustness mainly focus on balanced datasets, while real-world data usually exhibits a long-tailed distribution. To push adversarial robustness towards more realistic scenarios, in this work we investigate the adversarial vulnerability as well as defense under long-tailed distributions. In particular, we first reveal the negative impacts induced by imbalanced data on both recognition performance and adversarial robustness, uncovering the intrinsic challenges of this problem. We then perform a systematic study on existing long-tailed recognition methods in conjunction with the adversarial training framework. Several valuable observations are obtained: 1) natural accuracy is relatively easy to improve, 2) fake gain of robust accuracy exists under unreliable evaluation, and 3) boundary error limits the promotion of robustness. Inspired by these observations, we propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant classifier and data re-balancing via both margin engineering at training stage and boundary adjustment during inference. Extensive experiments demonstrate the superiority of our approach over other state-of-the-art defense methods. To our best knowledge, we are the first to tackle adversarial robustness under long-tailed distributions, which we believe would be a significant step towards real-world robustness. Our code is available at: this https URL .

Abstract (translated)

URL

https://arxiv.org/abs/2104.02703

PDF

https://arxiv.org/pdf/2104.02703.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot