Paper Reading AI Learner

Using Voice and Biofeedback to Predict User Engagement during Requirements Interviews

2021-04-06 10:34:36
Alessio Ferrari, Thaide Huichapa, Paola Spoletini, Nicole Novielli, Davide Fucci, Daniela Girardi

Abstract

Capturing users engagement is crucial for gathering feedback about the features of a software product. In a market-driven context, current approaches to collect and analyze users feedback are based on techniques leveraging information extracted from product reviews and social media. These approaches are hardly applicable in bespoke software development, or in contexts in which one needs to gather information from specific users. In such cases, companies need to resort to face-to-face interviews to get feedback on their products. In this paper, we propose to utilize biometric data, in terms of physiological and voice features, to complement interviews with information about the engagement of the user on the discussed product-relevant topics. We evaluate our approach by interviewing users while gathering their physiological data (i.e., biofeedback) using an Empatica E4 wristband, and capturing their voice through the default audio-recorder of a common laptop. Our results show that we can predict users' engagement by training supervised machine learning algorithms on biometric data, and that voice features alone can be sufficiently effective. The performance of the prediction algorithms is maximised when pre-processing the training data with the synthetic minority oversampling technique (SMOTE). The results of our work suggest that biofeedback and voice analysis can be used to facilitate prioritization of requirements oriented to product improvement, and to steer the interview based on users' engagement. Furthermore, the usage of voice features can be particularly helpful for emotion-aware requirements elicitation in remote communication, either performed by human analysts or voice-based chatbots.

Abstract (translated)

URL

https://arxiv.org/abs/2104.02410

PDF

https://arxiv.org/pdf/2104.02410.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot