Paper Reading AI Learner

A Cross-Modal Distillation Network for Person Re-identification in RGB-Depth

2018-10-27 13:37:10
Frank Hafner, Amran Bhuiyan, Julian F. P. Kooij, Eric Granger

Abstract

Person re-identification involves the recognition over time of individuals captured using multiple distributed sensors. With the advent of powerful deep learning methods able to learn discriminant representations for visual recognition, cross-modal person re-identification based on different sensor modalities has become viable in many challenging applications in, e.g., autonomous driving, robotics and video surveillance. Although some methods have been proposed for re-identification between infrared and RGB images, few address depth and RGB images. In addition to the challenges for each modality associated with occlusion, clutter, misalignment, and variations in pose and illumination, there is a considerable shift across modalities since data from RGB and depth images are heterogeneous. In this paper, a new cross-modal distillation network is proposed for robust person re-identification between RGB and depth sensors. Using a two-step optimization process, the proposed method transfers supervision between modalities such that similar structural features are extracted from both RGB and depth modalities, yielding a discriminative mapping to a common feature space. Our experiments investigate the influence of the dimensionality of the embedding space, compares transfer learning from depth to RGB and vice versa, and compares against other state-of-the-art cross-modal re-identification methods. Results obtained with BIWI and RobotPKU datasets indicate that the proposed method can successfully transfer descriptive structural features from the depth modality to the RGB modality. It can significantly outperform state-of-the-art conventional methods and deep neural networks for cross-modal sensing between RGB and depth, with no impact on computational complexity.

Abstract (translated)

URL

https://arxiv.org/abs/1810.11641

PDF

https://arxiv.org/pdf/1810.11641.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot