Paper Reading AI Learner

A Quantitative Analysis of Activities of Daily Living: Insights into Improving Functional Independence with Assistive Robotics

2021-04-08 17:00:52
Laura Petrich, Jun Jin, Masood Dehghan, Martin Jagersand

Abstract

Human assistive robotics have the potential to help the elderly and individuals living with disabilities with their Activities of Daily Living (ADL). Robotics researchers focus on assistive tasks from the perspective of various control schemes and motion types. Health research on the other hand focuses on clinical assessment and rehabilitation, arguably leaving important differences between the two domains. In particular, little is known quantitatively on which ADLs are typically carried out in a persons everyday environment - at home, work, etc. Understanding what activities are frequently carried out during the day can help guide the development and prioritization of robotic technology for in-home assistive robotic deployment. This study targets several lifelogging databases, where we compute (i) ADL task frequency from long-term low sampling frequency video and Internet of Things (IoT) sensor data, and (ii) short term arm and hand movement data from 30 fps video data of domestic tasks. Robotics and health care communities have differing terms and taxonomies for representing tasks and motions. In this work, we derive and discuss a robotics-relevant taxonomy from quantitative ADL task and motion data in attempt to ameliorate taxonomic differences between the two communities. Our quantitative results provide direction for the development of better assistive robots to support the true demands of the healthcare community.

Abstract (translated)

URL

https://arxiv.org/abs/2104.03892

PDF

https://arxiv.org/pdf/2104.03892.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot