Paper Reading AI Learner

Learning Chebyshev Basis in Graph Convolutional Networks for Skeleton-based Action Recognition

2021-04-12 14:08:58
Hichem Sahbi

Abstract

Spectral graph convolutional networks (GCNs) are particular deep models which aim at extending neural networks to arbitrary irregular domains. The principle of these networks consists in projecting graph signals using the eigen-decomposition of their Laplacians, then achieving filtering in the spectral domain prior to back-project the resulting filtered signals onto the input graph domain. However, the success of these operations is highly dependent on the relevance of the used Laplacians which are mostly handcrafted and this makes GCNs clearly sub-optimal. In this paper, we introduce a novel spectral GCN that learns not only the usual convolutional parameters but also the Laplacian operators. The latter are designed "end-to-end" as a part of a recursive Chebyshev decomposition with the particularity of conveying both the differential and the non-differential properties of the learned representations -- with increasing order and discrimination power -- without overparametrizing the trained GCNs. Extensive experiments, conducted on the challenging task of skeleton-based action recognition, show the generalization ability and the outperformance of our proposed Laplacian design w.r.t. different baselines (built upon handcrafted and other learned Laplacians) as well as the related work.

Abstract (translated)

URL

https://arxiv.org/abs/2104.05482

PDF

https://arxiv.org/pdf/2104.05482.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot