Paper Reading AI Learner

Mutual Information Preserving Back-propagation: Learn to Invert for Faithful Attribution

2021-04-14 05:20:48
Huiqi Deng, Na Zou, Weifu Chen, Guocan Feng, Mengnan Du, Xia Hu

Abstract

Back propagation based visualizations have been proposed to interpret deep neural networks (DNNs), some of which produce interpretations with good visual quality. However, there exist doubts about whether these intuitive visualizations are related to the network decisions. Recent studies have confirmed this suspicion by verifying that almost all these modified back-propagation visualizations are not faithful to the model's decision-making process. Besides, these visualizations produce vague "relative importance scores", among which low values can't guarantee to be independent of the final prediction. Hence, it's highly desirable to develop a novel back-propagation framework that guarantees theoretical faithfulness and produces a quantitative attribution score with a clear understanding. To achieve the goal, we resort to mutual information theory to generate the interpretations, studying how much information of output is encoded in each input neuron. The basic idea is to learn a source signal by back-propagation such that the mutual information between input and output should be as much as possible preserved in the mutual information between input and the source signal. In addition, we propose a Mutual Information Preserving Inverse Network, termed MIP-IN, in which the parameters of each layer are recursively trained to learn how to invert. During the inversion, forward Relu operation is adopted to adapt the general interpretations to the specific input. We then empirically demonstrate that the inverted source signal satisfies completeness and minimality property, which are crucial for a faithful interpretation. Furthermore, the empirical study validates the effectiveness of interpretations generated by MIP-IN.

Abstract (translated)

URL

https://arxiv.org/abs/2104.06629

PDF

https://arxiv.org/pdf/2104.06629.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot