Paper Reading AI Learner

Incremental Multi-Target Domain Adaptation for Object Detection with Efficient Domain Transfer

2021-04-13 19:35:54
Le Thanh Nguyen-Meidine, Madhu Kiran, Marco Pedersoli, Jose Dolz, Louis-Antoine Blais-Morin, Eric Granger

Abstract

Techniques for multi-target domain adaptation (MTDA) seek to adapt a recognition model such that it can generalize well across multiple target domains. While several successful techniques have been proposed for unsupervised single-target domain adaptation (STDA) in object detection, adapting a model to multiple target domains using unlabeled image data remains a challenging and largely unexplored problem. Key challenges include the lack of bounding box annotations for target data, knowledge corruption, and the growing resource requirements needed to train accurate deep detection models. The later requirements are augmented by the need to retraining a model with previous-learned target data when adapting to each new target domain. Currently, the only MTDA technique in literature for object detection relies on distillation with a duplicated model to avoid knowledge corruption but does not leverage the source-target feature alignment after UDA. To address these challenges, we propose a new Incremental MTDA technique for object detection that can adapt a detector to multiple target domains, one at a time, without having to retain data of previously-learned target domains. Instead of distillation, our technique efficiently transfers source images to a joint target domains' space, on the fly, thereby preserving knowledge during incremental MTDA. Using adversarial training, our Domain Transfer Module (DTM) is optimized to trick the domain classifiers into classifying source images as though transferred into the target domain, thus allowing the DTM to generate samples close to a joint distribution of target domains. Our proposed technique is validated on different MTDA detection benchmarks, and results show it improving accuracy across multiple domains, despite the considerable reduction in complexity.

Abstract (translated)

URL

https://arxiv.org/abs/2104.06476

PDF

https://arxiv.org/pdf/2104.06476.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot