Paper Reading AI Learner

Attentive Max Feature Map for Acoustic Scene Classification with Joint Learning considering the Abstraction of Classes

2021-04-15 03:14:15
Hye-jin Shim, Ju-ho Kim, Jee-weon Jung, Ha-Jin Yu

Abstract

The attention mechanism has been widely adopted in acoustic scene classification. However, we find that during the process of attention exclusively emphasizing information, it tends to excessively discard information although improving the performance. We propose a mechanism referred to as the attentive max feature map which combines two effective techniques, attention and max feature map, to further elaborate the attention mechanism and mitigate the abovementioned phenomenon. Furthermore, we explore various joint learning methods that utilize additional labels originally generated for subtask B (3-classes) on top of existing labels for subtask A (10-classes) of the DCASE2020 challenge. We expect that using two kinds of labels simultaneously would be helpful because the labels of the two subtasks differ in their degree of abstraction. Applying two proposed techniques, our proposed system achieves state-of-the-art performance among single systems on subtask A. In addition, because the model has a complexity comparable to subtask B's requirement, it shows the possibility of developing a system that fulfills the requirements of both subtasks; generalization on multiple devices and low-complexity.

Abstract (translated)

URL

https://arxiv.org/abs/2104.07213

PDF

https://arxiv.org/pdf/2104.07213.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot