Paper Reading AI Learner

SiamCorners: Siamese Corner Networks for Visual Tracking

2021-04-15 08:23:30
Kai Yang, Zhenyu He, Wenjie Pei, Zikun Zhou, Xin Li, Di Yuan, Haijun Zhang

Abstract

The current Siamese network based on region proposal network (RPN) has attracted great attention in visual tracking due to its excellent accuracy and high efficiency. However, the design of the RPN involves the selection of the number, scale, and aspect ratios of anchor boxes, which will affect the applicability and convenience of the model. Furthermore, these anchor boxes require complicated calculations, such as calculating their intersection-over-union (IoU) with ground truth bounding boxes.Due to the problems related to anchor boxes, we propose a simple yet effective anchor-free tracker (named Siamese corner networks, SiamCorners), which is end-to-end trained offline on large-scale image pairs. Specifically, we introduce a modified corner pooling layer to convert the bounding box estimate of the target into a pair of corner predictions (the bottom-right and the top-left corners). By tracking a target as a pair of corners, we avoid the need to design the anchor boxes. This will make the entire tracking algorithm more flexible and simple than anchorbased trackers. In our network design, we further introduce a layer-wise feature aggregation strategy that enables the corner pooling module to predict multiple corners for a tracking target in deep networks. We then introduce a new penalty term that is used to select an optimal tracking box in these candidate corners. Finally, SiamCorners achieves experimental results that are comparable to the state-of-art tracker while maintaining a high running speed. In particular, SiamCorners achieves a 53.7% AUC on NFS30 and a 61.4% AUC on UAV123, while still running at 42 frames per second (FPS).

Abstract (translated)

URL

https://arxiv.org/abs/2104.07303

PDF

https://arxiv.org/pdf/2104.07303.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot