Paper Reading AI Learner

T-LEAP: occlusion-robust pose estimation of walking cows using temporal information

2021-04-16 10:50:56
Helena Russello, Rik van der Tol, Gert Kootstra

Abstract

As herd size on dairy farms continue to increase, automatic health monitoring of cows has gained in interest. Lameness, a prevalent health disorder in dairy cows, is commonly detected by analyzing the gait of cows. A cow's gait can be tracked in videos using pose estimation models because models learn to automatically localize anatomical landmarks in images and videos. Most animal pose estimation models are static, that is, videos are processed frame by frame and do not use any temporal information. In this work, a static deep-learning model for animal-pose-estimation was extended to a temporal model that includes information from past frames. We compared the performance of the static and temporal pose estimation models. The data consisted of 1059 samples of 4 consecutive frames extracted from videos (30 fps) of 30 different dairy cows walking through an outdoor passageway. As farm environments are prone to occlusions, we tested the robustness of the static and temporal models by adding artificial occlusions to the videos. The experiments showed that, on non-occluded data, both static and temporal approaches achieved a Percentage of Correct Keypoints (PCKh@0.2) of 99%. On occluded data, our temporal approach outperformed the static one by up to 32.9%, suggesting that using temporal data is beneficial for pose estimation in environments prone to occlusions, such as dairy farms. The generalization capabilities of the temporal model was evaluated by testing it on data containing unknown cows (cows not present in the training set). The results showed that the average detection rate (PCKh@0.2) was of 93.8% on known cows and 87.6% on unknown cows, indicating that the model is capable of generalizing well to new cows and that they could be easily fine-tuned to new herds. Finally, we showed that with harder tasks, such as occlusions and unknown cows, a deeper architecture was more beneficial.

Abstract (translated)

URL

https://arxiv.org/abs/2104.08029

PDF

https://arxiv.org/pdf/2104.08029.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot