Paper Reading AI Learner

Decrypting Cryptic Crosswords: Semantically Complex Wordplay Puzzles as a Target for NLP

2021-04-17 18:54:00
Josh Rozner, Christopher Potts, Kyle Mahowald

Abstract

Cryptic crosswords, the dominant English-language crossword variety in the United Kingdom, can be solved by expert humans using flexible, creative intelligence and knowledge of language. Cryptic clues read like fluent natural language, but they are adversarially composed of two parts: a definition and a wordplay cipher requiring sub-word or character-level manipulations. As such, they are a promising target for evaluating and advancing NLP systems that seek to process language in more creative, human-like ways. We present a dataset of cryptic crossword clues from a major newspaper that can be used as a benchmark and train a sequence-to-sequence model to solve them. We also develop related benchmarks that can guide development of approaches to this challenging task. We show that performance can be substantially improved using a novel curriculum learning approach in which the model is pre-trained on related tasks involving, e.g, unscrambling words, before it is trained to solve cryptics. However, even this curricular approach does not generalize to novel clue types in the way that humans can, and so cryptic crosswords remain a challenge for NLP systems and a potential source of future innovation.

Abstract (translated)

URL

https://arxiv.org/abs/2104.08620

PDF

https://arxiv.org/pdf/2104.08620.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot