Paper Reading AI Learner

Why Should I Trust a Model is Private? Using Shifts in Model Explanation for Evaluating Privacy-Preserving Emotion Recognition Model

2021-04-18 09:56:41
Mimansa Jaiswal, Emily Mower Provost

Abstract

Privacy preservation is a crucial component of any real-world application. Yet, in applications relying on machine learning backends, this is challenging because models often capture more than a designer may have envisioned, resulting in the potential leakage of sensitive information. For example, emotion recognition models are susceptible to learning patterns between the target variable and other sensitive variables, patterns that can be maliciously re-purposed to obtain protected information. In this paper, we concentrate on using interpretable methods to evaluate a model's efficacy to preserve privacy with respect to sensitive variables. We focus on saliency-based explanations, explanations that highlight regions of the input text, which allows us to understand how model explanations shift when models are trained to preserve privacy. We show how certain commonly-used methods that seek to preserve privacy might not align with human perception of privacy preservation. We also show how some of these induce spurious correlations in the model between the input and the primary as well as secondary task, even if the improvement in evaluation metric is significant. Such correlations can hence lead to false assurances about the perceived privacy of the model because especially when used in cross corpus conditions. We conduct crowdsourcing experiments to evaluate the inclination of the evaluators to choose a particular model for a given task when model explanations are provided, and find that correlation of interpretation differences with sociolinguistic biases can be used as a proxy for user trust.

Abstract (translated)

URL

https://arxiv.org/abs/2104.08792

PDF

https://arxiv.org/pdf/2104.08792.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot