Paper Reading AI Learner

Do We Really Need Gold Samples for Sample Weighting Under Label Noise?

2021-04-19 04:36:51
Aritra Ghosh, Andrew Lan

Abstract

Learning with labels noise has gained significant traction recently due to the sensitivity of deep neural networks under label noise under common loss functions. Losses that are theoretically robust to label noise, however, often makes training difficult. Consequently, several recently proposed methods, such as Meta-Weight-Net (MW-Net), use a small number of unbiased, clean samples to learn a weighting function that downweights samples that are likely to have corrupted labels under the meta-learning framework. However, obtaining such a set of clean samples is not always feasible in practice. In this paper, we analytically show that one can easily train MW-Net without access to clean samples simply by using a loss function that is robust to label noise, such as mean absolute error, as the meta objective to train the weighting network. We experimentally show that our method beats all existing methods that do not use clean samples and performs on-par with methods that use gold samples on benchmark datasets across various noise types and noise rates.

Abstract (translated)

URL

https://arxiv.org/abs/2104.09045

PDF

https://arxiv.org/pdf/2104.09045.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot