Paper Reading AI Learner

Self-supervised Representation Learning With Path Integral Clustering For Speaker Diarization

2021-04-19 17:13:24
Prachi Singh, Sriram Ganapathy

Abstract

Automatic speaker diarization techniques typically involve a two-stage processing approach where audio segments of fixed duration are converted to vector representations in the first stage. This is followed by an unsupervised clustering of the representations in the second stage. In most of the prior approaches, these two stages are performed in an isolated manner with independent optimization steps. In this paper, we propose a representation learning and clustering algorithm that can be iteratively performed for improved speaker diarization. The representation learning is based on principles of self-supervised learning while the clustering algorithm is a graph structural method based on path integral clustering (PIC). The representation learning step uses the cluster targets from PIC and the clustering step is performed on embeddings learned from the self-supervised deep model. This iterative approach is referred to as self-supervised clustering (SSC). The diarization experiments are performed on CALLHOME and AMI meeting datasets. In these experiments, we show that the SSC algorithm improves significantly over the baseline system (relative improvements of 13% and 59% on CALLHOME and AMI datasets respectively in terms of diarization error rate (DER)). In addition, the DER results reported in this work improve over several other recent approaches for speaker diarization.

Abstract (translated)

URL

https://arxiv.org/abs/2104.09456

PDF

https://arxiv.org/pdf/2104.09456.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot