Paper Reading AI Learner

Dual Head Adversarial Training

2021-04-21 06:31:33
Yujing Jiang, Xingjun Ma, Sarah Monazam Erfani, James Bailey

Abstract

Deep neural networks (DNNs) are known to be vulnerable to adversarial examples/attacks, raising concerns about their reliability in safety-critical applications. A number of defense methods have been proposed to train robust DNNs resistant to adversarial attacks, among which adversarial training has so far demonstrated the most promising results. However, recent studies have shown that there exists an inherent tradeoff between accuracy and robustness in adversarially-trained DNNs. In this paper, we propose a novel technique Dual Head Adversarial Training (DH-AT) to further improve the robustness of existing adversarial training methods. Different from existing improved variants of adversarial training, DH-AT modifies both the architecture of the network and the training strategy to seek more robustness. Specifically, DH-AT first attaches a second network head (or branch) to one intermediate layer of the network, then uses a lightweight convolutional neural network (CNN) to aggregate the outputs of the two heads. The training strategy is also adapted to reflect the relative importance of the two heads. We empirically show, on multiple benchmark datasets, that DH-AT can bring notable robustness improvements to existing adversarial training methods. Compared with TRADES, one state-of-the-art adversarial training method, our DH-AT can improve the robustness by 3.4% against PGD40 and 2.3% against AutoAttack, and also improve the clean accuracy by 1.8%.

Abstract (translated)

URL

https://arxiv.org/abs/2104.10377

PDF

https://arxiv.org/pdf/2104.10377.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot