Paper Reading AI Learner

Structural Beauty: A Structure-based Approach to Quantifying the Beauty of an Image

2021-04-16 08:48:34
Bin Jiang, Chris de Rijke

Abstract

To say that beauty is in the eye of the beholder means that beauty is largely subjective so varies from person to person. While the subjectivity view is commonly held, there is also an objectivity view that seeks to measure beauty or aesthetics in some quantitative manners. Christopher Alexander has long discovered that beauty or coherence highly correlates to the number of subsymmetries or substructures and demonstrated that there is a shared notion of beauty - structural beauty - among people and even different peoples, regardless of their faiths, cultures, and ethnicities. This notion of structural beauty arises directly out of living structure or wholeness, a physical and mathematical structure that underlies all space and matter. Based on the concept of living structure, this paper develops an approach for computing the structural beauty or life of an image (L) based on the number of automatically derived substructures (S) and their inherent hierarchy (H). To verify this approach, we conducted a series of case studies applied to eight pairs of images including Leonardo da Vinci's Mona Lisa and Jackson Pollock's Blue Poles. We discovered among others that Blue Poles is more structurally beautiful than the Mona Lisa, and traditional buildings are in general more structurally beautiful than their modernist counterparts. This finding implies that goodness of things or images is largely a matter of fact rather than an opinion or personal preference as conventionally conceived. The research on structural beauty has deep implications on many disciplines, where beauty or aesthetics is a major concern such as image understanding and computer vision, architecture and urban design, humanities and arts, neurophysiology, and psychology. Keywords: Life; wholeness; figural goodness; head/tail breaks; computer vision

Abstract (translated)

URL

https://arxiv.org/abs/2104.11100

PDF

https://arxiv.org/pdf/2104.11100.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot