Paper Reading AI Learner

Weakly-supervised Multi-task Learning for Multimodal Affect Recognition

2021-04-23 12:36:19
Wenliang Dai, Samuel Cahyawijaya, Yejin Bang, Pascale Fung

Abstract

Multimodal affect recognition constitutes an important aspect for enhancing interpersonal relationships in human-computer interaction. However, relevant data is hard to come by and notably costly to annotate, which poses a challenging barrier to build robust multimodal affect recognition systems. Models trained on these relatively small datasets tend to overfit and the improvement gained by using complex state-of-the-art models is marginal compared to simple baselines. Meanwhile, there are many different multimodal affect recognition datasets, though each may be small. In this paper, we propose to leverage these datasets using weakly-supervised multi-task learning to improve the generalization performance on each of them. Specifically, we explore three multimodal affect recognition tasks: 1) emotion recognition; 2) sentiment analysis; and 3) sarcasm recognition. Our experimental results show that multi-tasking can benefit all these tasks, achieving an improvement up to 2.9% accuracy and 3.3% F1-score. Furthermore, our method also helps to improve the stability of model performance. In addition, our analysis suggests that weak supervision can provide a comparable contribution to strong supervision if the tasks are highly correlated.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11560

PDF

https://arxiv.org/pdf/2104.11560.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot