Paper Reading AI Learner

Safe Fakes: Evaluating Face Anonymizers for Face Detectors

2021-04-23 17:16:23
Sander R. Klomp (1 and 2), Matthew van Rijn (3), Rob G.J. Wijnhoven (2), Cees G.M. Snoek (3), Peter H.N. de With (1) ((1) Eindhoven University of Technology, (2) ViNotion B.V., (3) University of Amsterdam)

Abstract

Since the introduction of the GDPR and CCPA legislation, both public and private facial image datasets are increasingly scrutinized. Several datasets have been taken offline completely and some have been anonymized. However, it is unclear how anonymization impacts face detection performance. To our knowledge, this paper presents the first empirical study on the effect of image anonymization on supervised training of face detectors. We compare conventional face anonymizers with three state-of-the-art Generative Adversarial Network-based (GAN) methods, by training an off-the-shelf face detector on anonymized data. Our experiments investigate the suitability of anonymization methods for maintaining face detector performance, the effect of detectors overtraining on anonymization artefacts, dataset size for training an anonymizer, and the effect of training time of anonymization GANs. A final experiment investigates the correlation between common GAN evaluation metrics and the performance of a trained face detector. Although all tested anonymization methods lower the performance of trained face detectors, faces anonymized using GANs cause far smaller performance degradation than conventional methods. As the most important finding, the best-performing GAN, DeepPrivacy, removes identifiable faces for a face detector trained on anonymized data, resulting in a modest decrease from 91.0 to 88.3 mAP. In the last few years, there have been rapid improvements in realism of GAN-generated faces. We expect that further progression in GAN research will allow the use of Deep Fake technology for privacy-preserving Safe Fakes, without any performance degradation for training face detectors.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11721

PDF

https://arxiv.org/pdf/2104.11721.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot