Paper Reading AI Learner

Can You Trust Your Trust Measure?

2021-04-23 01:26:48
Meia Chita-Tegmark, Theresa Law, Nicholas Rabb, Matthias Scheutz

Abstract

Trust in human-robot interactions (HRI) is measured in two main ways: through subjective questionnaires and through behavioral tasks. To optimize measurements of trust through questionnaires, the field of HRI faces two challenges: the development of standardized measures that apply to a variety of robots with different capabilities, and the exploration of social and relational dimensions of trust in robots (e.g., benevolence). In this paper we look at how different trust questionnaires fare given these challenges that pull in different directions (being general vs. being exploratory) by studying whether people think the items in these questionnaires are applicable to different kinds of robots and interactions. In Study 1 we show that after being presented with a robot (non-humanoid) and an interaction scenario (fire evacuation), participants rated multiple questionnaire items such as "This robot is principled" as "Non-applicable to robots in general" or "Non-applicable to this robot". In Study 2 we show that the frequency of these ratings change (indeed, even for items rated as N/A to robots in general) when a new scenario is presented (game playing with a humanoid robot). Finally, while overall trust scores remained robust to N/A ratings, our results revealed potential fallacies in the way these scores are commonly interpreted. We conclude with recommendations for the development, use and results-reporting of trust questionnaires for future studies, as well as theoretical implications for the field of HRI.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11365

PDF

https://arxiv.org/pdf/2104.11365.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot