Paper Reading AI Learner

Explainable Artificial Intelligence Reveals Novel Insight into Tumor Microenvironment Conditions Linked with Better Prognosis in Patients with Breast Cancer

2021-04-24 20:50:41
Debaditya Chakraborty, Cristina Ivan, Paola Amero, Maliha Khan, Cristian Rodriguez-Aguayo, Hakan Başağaoğlu, Gabriel Lopez-Berestein

Abstract

We investigated the data-driven relationship between features in the tumor microenvironment (TME) and the overall and 5-year survival in triple-negative breast cancer (TNBC) and non-TNBC (NTNBC) patients by using Explainable Artificial Intelligence (XAI) models. We used clinical information from patients with invasive breast carcinoma from The Cancer Genome Atlas and from two studies from the cbioPortal, the PanCanAtlas project and the GDAC Firehose study. In this study, we used a normalized RNA sequencing data-driven cohort from 1,015 breast cancer patients, alive or deceased, from the UCSC Xena data set and performed integrated deconvolution with the EPIC method to estimate the percentage of seven different immune and stromal cells from RNA sequencing data. Novel insights derived from our XAI model showed that CD4+ T cells and B cells are more critical than other TME features for enhanced prognosis for both TNBC and NTNBC patients. Our XAI model revealed the critical inflection points (i.e., threshold fractions) of CD4+ T cells and B cells above or below which 5-year survival rates improve. Subsequently, we ascertained the conditional probabilities of $\geq$ 5-year survival in both TNBC and NTNBC patients under specific conditions inferred from the inflection points. In particular, the XAI models revealed that a B-cell fraction exceeding 0.018 in the TME could ensure 100% 5-year survival for NTNBC patients. The findings from this research could lead to more accurate clinical predictions and enhanced immunotherapies and to the design of innovative strategies to reprogram the TME of breast cancer patients.

Abstract (translated)

URL

https://arxiv.org/abs/2104.12021

PDF

https://arxiv.org/pdf/2104.12021.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot