Paper Reading AI Learner

Do All MobileNets Quantize Poorly? Gaining Insights into the Effect of Quantization on Depthwise Separable Convolutional Networks Through the Eyes of Multi-scale Distributional Dynamics

2021-04-24 01:28:29
Stone Yun, Alexander Wong

Abstract

As the "Mobile AI" revolution continues to grow, so does the need to understand the behaviour of edge-deployed deep neural networks. In particular, MobileNets are the go-to family of deep convolutional neural networks (CNN) for mobile. However, they often have significant accuracy degradation under post-training quantization. While studies have introduced quantization-aware training and other methods to tackle this challenge, there is limited understanding into why MobileNets (and potentially depthwise-separable CNNs (DWSCNN) in general) quantize so poorly compared to other CNN architectures. Motivated to gain deeper insights into this phenomenon, we take a different strategy and study the multi-scale distributional dynamics of MobileNet-V1, a set of smaller DWSCNNs, and regular CNNs. Specifically, we investigate the impact of quantization on the weight and activation distributional dynamics as information propagates from layer to layer, as well as overall changes in distributional dynamics at the network level. This fine-grained analysis revealed significant dynamic range fluctuations and a "distributional mismatch" between channelwise and layerwise distributions in DWSCNNs that lead to increasing quantized degradation and distributional shift during information propagation. Furthermore, analysis of the activation quantization errors show that there is greater quantization error accumulation in DWSCNN compared to regular CNNs. The hope is that such insights can lead to innovative strategies for reducing such distributional dynamics changes and improve post-training quantization for mobile.

Abstract (translated)

URL

https://arxiv.org/abs/2104.11849

PDF

https://arxiv.org/pdf/2104.11849.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot