Paper Reading AI Learner

Compact Generalized Non-local Network

2018-10-31 06:43:14
Kaiyu Yue, Ming Sun, Yuchen Yuan, Feng Zhou, Errui Ding, Fuxin Xu

Abstract

The non-local module is designed for capturing long-range spatio-temporal dependencies in images and videos. Although having shown excellent performance, it lacks the mechanism to model the interactions between positions across channels, which are of vital importance in recognizing fine-grained objects and actions. To address this limitation, we generalize the non-local module and take the correlations between the positions of any two channels into account. This extension utilizes the compact representation for multiple kernel functions with Taylor expansion that makes the generalized non-local module in a fast and low-complexity computation flow. Moreover, we implement our generalized non-local method within channel groups to ease the optimization. Experimental results illustrate the clear-cut improvements and practical applicability of the generalized non-local module on both fine-grained object recognition and video classification. Code is available at: \url{https://github.com/KaiyuYue/cgnl-network.pytorch}.

Abstract (translated)

URL

https://arxiv.org/abs/1810.13125

PDF

https://arxiv.org/pdf/1810.13125


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot