Paper Reading AI Learner

Sifting out the features by pruning: Are convolutional networks the winning lottery ticket of fully connected ones?

2021-04-27 17:25:54
Franco Pellegrini, Giulio Biroli
     

Abstract

Pruning methods can considerably reduce the size of artificial neural networks without harming their performance. In some cases, they can even uncover sub-networks that, when trained in isolation, match or surpass the test accuracy of their dense counterparts. Here we study the inductive bias that pruning imprints in such "winning lottery tickets". Focusing on visual tasks, we analyze the architecture resulting from iterative magnitude pruning of a simple fully connected network (FCN). We show that the surviving node connectivity is local in input space, and organized in patterns reminiscent of the ones found in convolutional networks (CNN). We investigate the role played by data and tasks in shaping the pruned sub-networks. Our results show that the winning lottery tickets of FCNs display the key features of CNNs. The ability of such automatic network-simplifying procedure to recover the key features "hand-crafted" in the design of CNNs suggests interesting applications to other datasets and tasks, in order to discover new and efficient architectural inductive biases.

Abstract (translated)

URL

https://arxiv.org/abs/2104.13343

PDF

https://arxiv.org/pdf/2104.13343.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot