Paper Reading AI Learner

Machine Learning Techniques for Software Quality Assurance: A Survey

2021-04-29 00:37:27
Safa Omri, Carsten Sinz

Abstract

Over the last years, machine learning techniques have been applied to more and more application domains, including software engineering and, especially, software quality assurance. Important application domains have been, e.g., software defect prediction or test case selection and prioritization. The ability to predict which components in a large software system are most likely to contain the largest numbers of faults in the next release helps to better manage projects, including early estimation of possible release delays, and affordably guide corrective actions to improve the quality of the software. However, developing robust fault prediction models is a challenging task and many techniques have been proposed in the literature. Closely related to estimating defect-prone parts of a software system is the question of how to select and prioritize test cases, and indeed test case prioritization has been extensively researched as a means for reducing the time taken to discover regressions in software. In this survey, we discuss various approaches in both fault prediction and test case prioritization, also explaining how in recent studies deep learning algorithms for fault prediction help to bridge the gap between programs' semantics and fault prediction features. We also review recently proposed machine learning methods for test case prioritization (TCP), and their ability to reduce the cost of regression testing without negatively affecting fault detection capabilities.

Abstract (translated)

URL

https://arxiv.org/abs/2104.14056

PDF

https://arxiv.org/pdf/2104.14056.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot