Paper Reading AI Learner

Modelling Urban Dynamics with Multi-Modal Graph Convolutional Networks

2021-04-29 20:00:47
Krittika D'Silva, Jordan Cambe, Anastasios Noulas, Cecilia Mascolo, Adam Waksman

Abstract

Modelling the dynamics of urban venues is a challenging task as it is multifaceted in nature. Demand is a function of many complex and nonlinear features such as neighborhood composition, real-time events, and seasonality. Recent advances in Graph Convolutional Networks (GCNs) have had promising results as they build a graphical representation of a system and harness the potential of deep learning architectures. However, there has been limited work using GCNs in a temporal setting to model dynamic dependencies of the network. Further, within the context of urban environments, there has been no prior work using dynamic GCNs to support venue demand analysis and prediction. In this paper, we propose a novel deep learning framework which aims to better model the popularity and growth of urban venues. Using a longitudinal dataset from location technology platform Foursquare, we model individual venues and venue types across London and Paris. First, representing cities as connected networks of venues, we quantify their structure and note a strong community structure in these retail networks, an observation that highlights the interplay of cooperative and competitive forces that emerge in local ecosystems of retail businesses. Next, we present our deep learning architecture which integrates both spatial and topological features into a temporal model which predicts the demand of a venue at the subsequent time-step. Our experiments demonstrate that our model can learn spatio-temporal trends of venue demand and consistently outperform baseline models. Relative to state-of-the-art deep learning models, our model reduces the RSME by ~ 28% in London and ~ 13% in Paris. Our approach highlights the power of complex network measures and GCNs in building prediction models for urban environments. The model could have numerous applications within the retail sector to better model venue demand and growth.

Abstract (translated)

URL

https://arxiv.org/abs/2104.14633

PDF

https://arxiv.org/pdf/2104.14633.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot