Paper Reading AI Learner

Chop Chop BERT: Visual Question Answering by Chopping VisualBERT's Heads

2021-04-30 03:32:02
Chenyu Gao, Qi Zhu, Peng Wang, Qi Wu

Abstract

Vision-and-Language (VL) pre-training has shown great potential on many related downstream tasks, such as Visual Question Answering (VQA), one of the most popular problems in the VL field. All of these pre-trained models (such as VisualBERT, ViLBERT, LXMERT and UNITER) are built with Transformer, which extends the classical attention mechanism to multiple layers and heads. To investigate why and how these models work on VQA so well, in this paper we explore the roles of individual heads and layers in Transformer models when handling $12$ different types of questions. Specifically, we manually remove (chop) heads (or layers) from a pre-trained VisualBERT model at a time, and test it on different levels of questions to record its performance. As shown in the interesting echelon shape of the result matrices, experiments reveal different heads and layers are responsible for different question types, with higher-level layers activated by higher-level visual reasoning questions. Based on this observation, we design a dynamic chopping module that can automatically remove heads and layers of the VisualBERT at an instance level when dealing with different questions. Our dynamic chopping module can effectively reduce the parameters of the original model by 50%, while only damaging the accuracy by less than 1% on the VQA task.

Abstract (translated)

URL

https://arxiv.org/abs/2104.14741

PDF

https://arxiv.org/pdf/2104.14741.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot