Paper Reading AI Learner

Safety-Control of Mobile Robots Under Time-Delay Using Barrier Certificates and a Two-Layer Predictor

2021-04-30 15:17:00
Azad Ghaffari, Manavendra Desai

Abstract

Performing swift and agile maneuvers is essential for the safe operation of autonomous mobile robots. Moreover, the presence of time-delay restricts the response time of the system and hinders the safety performance. Thus, this paper proposes a modular and scalable safety-control design that utilizes the Smith predictor and barrier certificates to safely and consistently avoid obstacles with different footprints. The proposed solution includes a two-layer predictor to compensate for the time-delay in the servo-system and angle control loops. The proposed predictor configuration dramatically improves the transient performance and reduces response time. Barrier certificates are used to determine the safe range of the robot's heading angle to avoid collisions. The proposed obstacle avoidance technique conveniently integrates with various trajectory tracking algorithms, which enhances design flexibility. The angle condition is adaptively calculated and corrects the robot's heading angle and angular velocity. Also, the proposed method accommodates multiple obstacles and decouples the control structure from the obstacles' shape, count, and distribution. The control structure has only eight tunable parameters facilitating control calibration and tuning in large systems of mobile robots. Extensive experimental results verify the effectiveness of the proposed safety-control.

Abstract (translated)

URL

https://arxiv.org/abs/2104.15047

PDF

https://arxiv.org/pdf/2104.15047.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot