Paper Reading AI Learner

Consumer Demand Modeling During COVID-19 Pandemic

2021-05-03 17:36:06
Shaz Hoda, Amitoj Singh, Anand Rao, Remzi Ural, Nicholas Hodson

Abstract

tract: The current pandemic has introduced substantial uncertainty to traditional methods for demand planning. These uncertainties stem from the disease progression, government interventions, economy and consumer behavior. While most of the emerging literature on the pandemic has focused on disease progression, a few have focused on consequent regulations and their impact on individual behavior. The contributions of this paper include a quantitative behavior model of fear of COVID-19, impact of government interventions on consumer behavior, and impact of consumer behavior on consumer choice and hence demand for goods. It brings together multiple models for disease progression, consumer behavior and demand estimation-thus bridging the gap between disease progression and consumer demand. We use panel regression to understand the drivers of demand during the pandemic and Bayesian inference to simplify the regulation landscape that can help build scenarios for resilient demand planning. We illustrate this resilient demand planning model using a specific example of gas retailing. We find that demand is sensitive to fear of COVID-19: as the number of COVID-19 cases increase over the previous week, the demand for gas decreases -- though this dissipates over time. Further, government regulations restrict access to different services, thereby reducing mobility, which in itself reduces demand.

Abstract (translated)

URL

https://arxiv.org/abs/2105.01036

PDF

https://arxiv.org/pdf/2105.01036


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot