Paper Reading AI Learner

Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models

2018-11-01 12:05:50
Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, Lenka Zdeborová

Abstract

Generalized linear models (GLMs) arise in high-dimensional machine learning, statistics, communications and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant in problems such as compressed sensing, error-correcting codes or benchmark models in neural networks. We evaluate the mutual information (or "free entropy") from which we deduce the Bayes-optimal estimation and generalization errors. Our analysis applies to the high-dimensional limit where both the number of samples and the dimension are large and their ratio is fixed. Non-rigorous predictions for the optimal errors existed for special cases of GLMs, e.g. for the perceptron, in the field of statistical physics based on the so-called replica method. Our present paper rigorously establishes those decades old conjectures and brings forward their algorithmic interpretation in terms of performance of the generalized approximate message-passing algorithm. Furthermore, we tightly characterize, for many learning problems, regions of parameters for which this algorithm achieves the optimal performance, and locate the associated sharp phase transitions separating learnable and non-learnable regions. We believe that this random version of GLMs can serve as a challenging benchmark for multi-purpose algorithms. This paper is divided in two parts that can be read independently: The first part (main part) presents the model and main results, discusses some applications and sketches the main ideas of the proof. The second part (supplementary informations) is much more detailed and provides more examples as well as all the proofs.

Abstract (translated)

URL

https://arxiv.org/abs/1708.03395

PDF

https://arxiv.org/pdf/1708.03395.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot